Department of Computer Science \& Engineering
 Indian Institute of Technology Kharagpur

Class Test 1
Data Analytics : CS61061

(Autumn-2023)

Instructions:

- You are advised to attempt all questions.
- Use separate page to answer to next question.
- You can use non-programmable calculator and statistical table, if needed.
- Write your name, roll number clearly on the front page of the answer script.
- You may plan maximum 10 minutes to answer each question.
- Each question carry 5 marks.

1. Mr. X is looking for a safe investment that provides safe and stable returns. There are following options:
a) Stocks: The volatility of the stock is 10% and the expected return is 14%.
b) Mutual funds: It offers an expected return of 13% with a volatility of 7%.
c) Fixed deposits: This scheme offers an expected return of 3% with 2% volatility.

In order to select the most suitable investment opportunity, Mr. X should choose which investment scheme?

Solution:

Here Mr. X should calculate the coefficient of variance of each investment scheme, That is
$\mathrm{CV}=\frac{\sigma}{\mu} * 100=\frac{\text { Volatility }}{\text { Expectation }} \times 100$
cv (Stocks) $=(10 / 14) \times 100=71.4 \%$
cv $(M F)=(7 / 13) \times 100=53.8 \%$
Cv $(F D)=(2 / 3) \times 100=66.7 \%$
Based on the above calculation, Mr. X should invest in MF scheme as it offers the lower coefficient (of variation).
2. 10 workers can do some work in 2 days, 5 workers in 10 days and 3 workers in 6 days. How many days on the average that a worker can do?

Solution:

This problem can be showed with weighted harmonic mean.
Here:

$w 1=10 ;$	$w 2=5 ;$
$d 1=2 ;$	$w 3=3 ;$
$r=\frac{w 2=10 ;}{w 1 * \frac{1}{d 1}+w 2 * \frac{1}{d 2}+w 3 * \frac{1}{d 3}}$	$d 3=6 ;$
$=\frac{10+5+3}{10 *\left(\frac{1}{2}\right)+5 *\left(\frac{1}{10}\right)+3 *\left(\frac{1}{6}\right)}$	
$=3$ days	

3. A production house packs 1000 items in a box. It is believed that 1 item in 2000 on an average is defective. What is the probability that a box contains 2 or more defective items?

Solution:

We are to find $P(x>=2)$.
The correct distribution of the random variable is Bernoulli's Distribution. Here,
$\mathrm{n}=1000 ; \quad \mathrm{p}=1 / 2000 ; \quad \mathrm{q}=1999 / 2000$
using Bernoulli's Distribution,
$P(x==0)=\left(\frac{1999}{2000}\right)^{1000}=0.60645$
$P(x==1)=1000 *\left(\frac{1999}{2000}\right)^{1000} *\left(\frac{1}{2000}\right)=0.30338$
$P(x==0)+P(x==1)=0.60645+0.30338=0.90983$

There, $P(x>=2)=1-0.90983=0.0902$ (Ans)
4. A class test of 60 marks was conducted and the scores of the students is found to be normally distributed with a mean of 50 and standard deviation 12.
A sample of 225 students' scores are selected at random and mean score is found to be 52 with σ remains the same.
Hypothesis to be tested that mean score in the class test is valid. Calculate the p-value of this test. What it does mean?

Solution:

(a) $H_{0}: \mu=50 ; H_{1}: \mu \neq 50$
(b) Calculate Statistical value of the sample.
$\mathrm{n}=225 ; \quad \sigma=12 ; \quad \bar{x}=55 ;$
$z=\frac{52-50}{\frac{12}{\sqrt{225}}}=\frac{2 * 15}{12}=2.5$
(c) $\mathrm{p}=2 * \mathrm{P}(\mathrm{z}>2.5)=2 * 0.0062=0.0124$

Assuming, $\alpha=0.05$
p-value < α.
μ_{0} is Rejected.
(d) Mean: The chance of committing Type - I error is 1.24%

